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ABSTRACT

Null hypothesis significance testing (NHST) is the dominant statistical approach in biology, although it has many,

frequently unappreciated, problems. Most importantly, NHST does not provide us with two crucial pieces of

information: (1) the magnitude of an effect of interest, and (2) the precision of the estimate of the magnitude of

that effect. All biologists should be ultimately interested in biological importance, which may be assessed using

the magnitude of an effect, but not its statistical significance. Therefore, we advocate presentation of measures of

the magnitude of effects (i.e. effect size statistics) and their confidence intervals (CIs) in all biological journals.

Combined use of an effect size and its CIs enables one to assess the relationships within data more effectively

than the use of p values, regardless of statistical significance. In addition, routine presentation of effect sizes will

encourage researchers to view their results in the context of previous research and facilitate the incorporation of

results into future meta-analysis, which has been increasingly used as the standard method of quantitative review

in biology. In this article, we extensively discuss two dimensionless (and thus standardised) classes of effect size

statistics: d statistics (standardised mean difference) and r statistics (correlation coefficient), because these can be

calculated from almost all study designs and also because their calculations are essential for meta-analysis.

However, our focus on these standardised effect size statistics does not mean unstandardised effect size statistics

(e.g. mean difference and regression coefficient) are less important. We provide potential solutions for four main

technical problems researchers may encounter when calculating effect size and CIs: (1) when covariates exist, (2)

when bias in estimating effect size is possible, (3) when data have non-normal error structure and/or variances,

and (4) when data are non-independent. Although interpretations of effect sizes are often difficult, we provide

some pointers to help researchers. This paper serves both as a beginner’s instruction manual and a stimulus for

changing statistical practice for the better in the biological sciences.
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I. INTRODUCTION

The statistical approach commonly used in most biological
disciplines is based on null hypothesis significance testing
(NHST). However, the NHST-centric approach is rare
amongst mathematically trained statisticians today and is
becoming marginalised in biomedical statistics (particularly
in the analysis of clinical drug trials), psychology and several
other social sciences (Wilkinson & the Task Force on
Statistical Inference, 1999; Altman et al., 2001; American
Psychological Association, 2001; Kline, 2004; Fidler et al.,
2004; Grissom & Kim, 2005). It is also the centre of current
debate and imminent change in some areas of ecology and
conservation science (Stephens et al., 2005; Fidler et al.,
2006; McCarthy, 2007; Stephens, Buskirk & Del Rio, 2007).
These movements are not surprising since NHST does not
provide us with what are probably the two most important
pieces of information in statistical inference: estimates of (1)
the magnitude of an effect of interest (or a parameter of
interest) and (2) the precision of that estimate (e.g.
confidence intervals for effect size). NHST only informs us
of the probability of the observed or more extreme data
given that the null hypothesis is true, i.e. p value, upon
which we make a dichotomous decision: reject or fail to
reject. This paper explains how NHST misleads, why the
presentation of unstandardised and/or standardised effect
sizes and their associated confidence intervals (CIs) is
preferable, and gives guidance on how to calculate them.
We feel that it is the absence of accessible recommendations
and systematic guidelines for effect size presentation, as
much as an ignorance of the issues, which has hindered
the spread of good statistical practice in the biological
literature (e.g. Nakagawa, 2004; Nakagawa & Foster, 2004;
Garamszegi, 2006).

II. WHY DO WE NEED EFFECT SIZE?

(1) Null hypothesis significance testing misleads

We will not provide a comprehensive list of the problems of
NHST and associated p value here; this has already
appeared elsewhere (Harlow, Mulaik & Steiger, 1997;
Nickerson, 2000; Kline, 2004). Instead, we describe the
three problems which we consider most relevant to the
biological sciences.
First, in the real world, the null hypothesis can rarely be

true. We do not mean that NHST can only reject, or fail to
reject, rather than support the null hypothesis; rather that
the null hypothesis itself is usually false. Consider a nomi-

nally monomorphic species of bird. Measuring the wing
lengths of a large sample of males and females (say 1000
individuals) yields no significant sex difference and the
researcher, well trained in classical statistics, concludes that
the null hypothesis cannot be rejected. However, if one
could somehow measure every single male and female in
the species (i.e. the population that the sample of 1000
individuals was used to draw inferences about), then there
would unquestionably be a difference in the mean wing
length of males and females. If no sex difference was
evident, this would only be due to a lack of measurement
precision (e.g. the means may be identical to the nearest
0.1 mm, but not to the nearest 0.00001 mm). The only
instance in which the null hypothesis may be exactly true is
for categorical data; for example the sex ratio (number of
males and females in a population) may indeed be exactly
equal, but this is likely to be a transient and infrequent state
of affairs. Of course what matters in the case of wing length
or sex ratio is that the difference is too small to be
biologically important, but this is a matter of biological
inference, not statistics; the null hypothesis itself cannot be
true (nor is it biologically relevant whether it is exactly true).

Second, NHST and the associated p value give undue
importance to just one of the hypotheses with which the
data may be consistent. To understand why this may be
misleading, it is useful to consider what is sometimes termed
the counter-null hypothesis (Rosenthal, Rosnow & Rubin,
2000). As a simple example, consider a measured change in
some continuous variable (Fig. 1). The mean change is
10 units but, with the observed variation, the 95% confi-
dence intervals include zero (say –1 to ]21). A one-sample
t-test is therefore non-significant and in classical statistics
one would conclude that the observed data could plausibly
come from a population of mean zero; ‘no change’.
However, a value of 20 is just as far from the observed
mean (10) as is zero. Therefore, the data are just as
consistent with the counter-null hypothesis of 20 as they are
with the null hypothesis of zero. Nothing in the observed
data say that a true population change of 0 is more likely
than a change of 20, only the NHST-centric approach gives
it this prominence. One can easily imagine a clinical
situation in which concluding that the data were consistent
with ‘no change’, when in fact a change of 20 was just as
well supported, could be disastrous.

Third, the NHST-centric approach encourages dismissal
or acceptance of hypotheses, rather than an assessment of
degrees of likelihood. One should ideally design experi-
ments where (the effect size estimates from) the data are
likely under one favoured hypothesis but not others.
Instead, much biological research sets out to falsify (or,
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more accurately, render unlikely) the null hypothesis, which
is rarely the experimental hypothesis under scrutiny. The
danger here is that one ends up ‘affirming the consequent’,
one of the 13 logical fallacies described by Aristotle (Gabbay
et al., 2002). A theory, A, predicts that a change in X causes
Y; one manipulates X and observes Y (as supported by
a rejection of the null hypothesis); one concludes that theory
A is supported. This is fallacious, most obviously because
theories B, C, D and E may also predict that X influences Y
and may even be more likely. Even if the conclusion is the
more cautious ‘‘our results are consistent with theory A’’,
this is weak science. Good science would pit theory A
against theories B, C, D and E with an experiment where
each theory gave different predictions. In some areas of
biology data are indeed collected with a view to testing
plausible alternative hypotheses: within our own discipline
of behavioural ecology, sex ratio theory is the prime
example (Hardy, 2002) and optimal foraging theory
adopted this stance after early criticism (Kacelnik & Cuthill,
1987). However, in too many studies only two hypotheses
are aired: the favoured one and the null hypothesis. It is
worth highlighting here what the p value in NHST
represents: the probability of the data (and even more
unlikely events) if the null hypothesis is true. Instead, is it not
often more interesting to ask what the probability of a given
hypothesis is, given the data? The latter, p(hypothesis | data)
rather than p(data | hypothesis), requires a Bayesian
approach rather than the classical statistics of NHST (e.g.
Yoccoz, 1991; Cohen, 1994; Hilborn & Mangel, 1997).

A likely counter to the arguments in the previous
paragraph is that many fields within biology are young
disciplines and with new theory one simply wants to know
whether there is any effect at all. A p value apparently
provides the necessary information: the likelihood of getting
the observed effects given that the null hypothesis is true
[i.e. p(data | hypothesis)]. However, with sufficient mea-
surement precision and a large enough sample size one can

always obtain a (statistically) non-zero effect. The reason
that this jars with the intuition of many biologists is, we feel,
the result of multiple meanings of the word ‘effect’. Biology,
like any science, seeks to establish causal relationships.
When biologists talk of an ‘effect’ they mean a causal
influence; they often rely heavily and appropriately on
experiments to distinguish cause from correlation. However
an effect in statistics need not imply causality; for example,
a correlation coefficient is a measure of effect. Measures of
the magnitude of an effect in statistics (i.e. effect size; see
below) are simply estimates of the differences between
groups or the strength of associations between variables.
Therefore there is no inconsistency between the statements
that a factor has no biological (causal) effect and yet has
a measurably non-zero statistical effect.

(2) Effect size and confidence interval

In the literature, the term ‘effect size’ has several different
meanings. Firstly, effect size can mean a statistic which
estimates the magnitude of an effect (e.g. mean difference,
regression coefficient, Cohen’s d, correlation coefficient). We
refer to this as an ‘effect statistic’ (it is sometimes called an
effect size measurement or index). Secondly, it also means
the actual values calculated from certain effect statistics (e.g.
mean difference ¼ 30 or r ¼ 0.7; in most cases, ‘effect size’
means this, or is written as ‘effect size value’). The third
meaning is a relevant interpretation of an estimated
magnitude of an effect from the effect statistics. This is
sometimes referred to as the biological importance of the
effect, or the practical and clinical importance in social and
medical sciences.

A confidence interval (CI) is usually interpreted as the
range of values that encompass the population or ‘true’ value,
estimated by a certain statistic, with a given probability (e.g.
Cohen, 1990; Rice, 1995; Zar, 1999; Quinn & Keough,
2002). For example, if one could replicate the sampling ex-
ercise a very large number of times, roughly 95% of the
95% CIs calculated from these samples would be expected
to include the true value of the population parameter of
interest. The deduction from this being that one can be
fairly certain that the value of the population parameter lies
within this envelope (with a 5% chance of being wrong, of
course). The interpretation that CIs provide an envelope
within which the parameter value of interest is likely to lie
(e.g. Grafen & Hails, 2002) makes sense even when trying
to estimate one-off events for which a ‘true’ population
value has no obvious meaning, such as the probability that
a particular species becomes extinct within a given time
frame (for Bayesian perspective of CIs or ‘credible’ intervals,
see Clark & Lavine, 2001; Woodworth, 2005; McCarthy,
2007).

The approach of combining point estimation of effect
size with CIs provides us with not only information on
conventional statistical significance but also information
that cannot be obtained from p values. For example, when
we have a mean difference of 29 with 95% CI ¼ –1 to 59,
the result is not statistically significant (at an a level of 0.05)
because the CIs include zero, while another mean
difference 29 with 95% CI ¼ 9 to 49 is statistically

Change (arbitrary units)

H0 X 20

–10 0 10 20 30 40

Fig. 1. Illustration of the relationship between the null
hypothesis and ‘counter-null hypothesis’ in a one-sample
situation when the null hypothesis (H0) is zero. When
confidence intervals include zero, the null hypothesis is
formally not rejected. However the counter-null hypothesis,
lying at the same distance on the opposite side of the sample
mean (X� ), has just as much statistical support as the null
hypothesis of zero.
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significant because the CI does not include zero. We stress
that the CIs around an effect size are not simply a tool for
NHST, but show a range of probable effect size estimates
with a given confidence. By contrast, p values allow only
a dichotomous decision. While it is true that a dichotomous
decision may often be what we need to make in many
research contexts, automatic yes-no decisions at a ¼ 0.05
can hinder biologists from thinking about and appreciating
what their data really mean. As we see later on, consid-
eration of effect size and its CIs will enable researchers to
make more biologically relevant decisions.
In addition, researchers should be more interested in how

much of an effect their manipulations had and how strong
the relationships they observed were than in statistical
significance. Effect statistics quantify the size of experimen-
tal effects (e.g. mean difference, Cohen’s d) and the strength
of relationships (e.g. Pearson’s r, phi coefficient; see below
for more details on effect statistics). Identifying biological
importance is what all biologists are ultimately aiming for,
not the identification of statistical significance. What is
more, dimensionless effect statistics such as d, g, and r (often
called standardised effect sizes) set up platforms for
comparison among independent studies, which is the basis
of meta-analysis.

(3) Encouraging ‘meta-analytic’ and ‘effective’
thinking

Since Gene Glass (1976) first introduced meta-analysis, it
has become an essential and established tool for literature
review and research synthesis in the social and medical
sciences (Hunt, 1997; Egger, Smith & Altman, 2001;
Hunter & Schmidt, 2004). In evolution and ecology meta-
analysis is still fairly new, with meta-analytic reviews starting
to appear in the early 90s (e.g. Gurevitch & Hedges, 1993;
Arnqvist & Wooster, 1995). Meta-analysis is an effect-size-
based review of research that combines results from
different studies on the same topic in order to draw general
conclusions by estimating the central tendency and
variability in effect sizes across these studies. Because of
this emphasis, rather than on statistical significance, meta-
analysists naturally think outside of the limitations of NHST
(Kline, 2004). In social and medical sciences, series of meta-
analyses have revealed that the conclusions of some
individual studies based on NHST have been wrong (e.g.
Lipsey & Wilson, 1993; see also Hunt, 1997). Recently, the
benefits of meta-analysis have been described as ‘meta-
analytic’ thinking (Cumming & Finch, 2001; Thompson,
2002b). Characteristics of meta-analytic thinking include
the following: (1) an accurate understanding of preceding
research results in terms of effect size is essential; (2) the
report of effect size (along with its CIs) becomes routine, so
that results can easily be incorporated into a future meta-
analysis; (3) comparisons of new effect sizes with effect sizes
from previous studies are made for interpretation of new
results, and (4) researchers see their piece of research as
a modest contribution to the much larger picture in
a research field (for the benefits of Bayesian approach,
which somewhat parallels those of meta-analytic thinking,
see McCarthy 2007). However, care should be taken with

meta-analytic reviews in biology. Biological research can
deal with a variety of species in different contexts, whereas
in social and medical sciences research is centred around
humans and a narrow range of model organisms, often in
controlled settings. While meta-analysis of a set of similar
experiments on a single species has a clear interpretation,
generalization from meta-analysis across species and
contexts may be questionable. Nevertheless, meta-analytic
thinking itself is a vital practice for biologists.

In meta-analysis, presentation of effect statistics and their
CIs is mandatory. Familiarization with effect statistics and
their CIs encourages not only meta-analytic thinking but
also what we name ‘effective’ thinking. The benefit of
effective thinking is condensed and seen in Fig. 2. As you
can see in the figure, the combination of effect sizes and CIs
can reveal what p values cannot show (i.e., uncertainty of
effect, direction of effect, and magnitude of effect). The
approach of using effect sizes and their CIs allows effective
statistical inference from data, offering a better understand-
ing and characterisation of the results. It seems that many
researchers have fallen for the apparent efficiency of NHST
which allows them simple dichotomous decisions (statisti-
cally significant or not at a ¼ 0.05). It is often the case that
a result with p < 0.05 is interpreted as representing a real
effect whereas a result with a p value larger than 0.05 is
interpreted as representing no real effect; this is wrong.

p=0.05 (n = 20)

p=0.5 (n = 200)

p=0.5 (n = 20)

p=0.06 (n = 200)

p=0.06 (n = 20)

p=0.05 (n = 200)

p<0.0001 (n = 20)

p<0.0001 (n = 200)

Correlation coefficient
−0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Fig. 2. Effect size estimations (correlation coefficient) and their
confidence intervals (CIs). Each pair of p values is based on two
different sample sizes: n ¼ 20 and n ¼ 200. The same p values
with different sample sizes can provide dissimilar effect size
estimates and their CIs. For example, the two effect size
estimations of what is usually termed ‘highly significant’ p value
(i.e. p > 0.0001) are remarkably different.
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Fig. 2 illustrates that the difference between p ¼ 0.05 and
p ¼ 0.06 in terms of effect size is minimal. What is more,
non-rejection of the null hypothesis is frequently interpreted
as evidence for no effect without any further evidence for
the null hypothesis. Both conclusions are fallacious. When
a non-significant result is obtained, the result is only
‘inconclusive’ (Fisher, 1935; Cohen, 1990). By contrast, the
dual approach of including effect sizes and their CIs is
effective in interpreting non-significant results. Data
analysis that focuses on effect size attributes rather than
relying on statistical significance will make biology proceed
as cumulative science rather than a series of isolated case
studies (for a criticism of the use of adjusted p values, or
Bonferroni-type procedures, for multiple comparison, see
Nakagawa 2004 and the references therein).

(4) Power analysis is right for the wrong
reasons

Effect size is also a crucial component of statistical power
analysis. Statistical power analysis utilises the relationships
amongst four statistical parameters: sample size, signifi-
cance criterion (a or the Type I error rate), effect size, and
power (which is the probability the test will reject the null
hypothesis when the null hypothesis is actually false, or 1 – b,
the Type II error rate). When any three of these four
parameters are fixed, the remaining one can be determined
(Cohen, 1988; Nakagawa & Foster, 2004). Statistical power
analysis has gained popularity mainly as a tool for iden-
tifying an ‘appropriate’ sample size. However, power
analysis is part of NHST and thus has the associated
problems of NHST (e.g. over-emphasis on attainment of
statistical significance). Fortunately, power analysis can
provide researchers with a good experimental design, albeit
for unintended reasons, because the factors which increase
power also contribute to an increased precision in esti-
mating effect size (i.e. an increase in sample size generally
reduces the CI). Thus power analysis, as part of good ex-
perimental design, is right for the wrong reasons (see also
Schmidt, 1996; Gelman & Hill, 2007).

III. HOW TO OBTAIN AND INTERPRET
EFFECT SIZE

(1) Choice of effect statistics

Kirk (1996) listed more than 40 effect statistics and more
recently 61 effect statistics have been identified by Elmore
(2001, cited in Huberty, 2002). As effect size reporting
becomes obligatory in the social and biomedical sciences,
more effect statistics, which are fit for particular sorts of
statistical methods, are expected to emerge. For researchers
who have never calculated effect size, the task of choosing
the appropriate effect statistics for their experimental
designs may seem overwhelming. For example, one could
go ahead and calculate a single effect statistic for a two-way
analysis of variance (ANOVA) with two and five levels in
each factor respectively. But how useful will this effect size
be in understanding the experimental results? In general,

we are ultimately interested in specific relationships (pair-
wise group differences or a linear or polynomial trend), not
in the combined set of differences among all levels (see
Rosenthal et al., 2000). However, we are able to reduce any
multiple-level or multiple-variable relationship to a set of
two-variable relationships, whatever experimental design
we are using (Rosenthal et al., 2000). Therefore, three types
of effect statistics suffice for most situations: r statistics (cor-
relation coefficients including Pearson’s, Spearman’s, point-
biserial, and phi; for details, see Rosenthal, 1994; Fern &
Monroe, 1996), d statistics (Cohen’s d or Hedges’ g), and the
odds ratio (OR, one of three most used comparative risk
measurements, namely odds ratio, relative risk and risk
difference; see Fleiss, 1994; Kline, 2004). Calculating and
presenting these three effect statistics facilitates future
incorporation into a meta-analysis because the methods
have been developed to deal especially with these three
types of effect statistics (Shadish & Haddock, 1994; Hunt,
1997; Lipsey & Wilson, 2001; Hunter & Schmidt, 2004;
note that we will discuss the importance of unstandardised
effect statistics below).

The r statistics are usually used when the two variables
are continuous; many non-experimental studies are of this
type (the distinction between correlation, i.e. r statistics, and
regression is discussed below). The d statistics (sometimes
referred to as standardised mean differences) are used when
the response (dependent) variable is continuous while the
predictor (independent variable) is categorical; d should be
calculable for pair-wise contrasts within any ANOVA-type
design as well as intrinsically two-group studies. The odds
ratio is used when the response variable is dichotomous and
the predictor variable(s) dichotomous or continuous, such as
in contingency tables, logistic regression, loglinear model-
ling and survival analysis (see Breaugh, 2003; Faraway
2006).

Table 1 lists the most likely cases for d calculations. It is
important to notice that d calculations do not change
according to whether or not the two groups or treatments
are independent, whereas t calculations do. Dunlap et al.
(1996) point out that many meta-analysists have erroneously
used Equation 3 where they should have used Equation 4
(Table 1), inflating effect size unintentionally (see Section
III.5 for more on non-independence). Table 2 shows how to
obtain the odds ratio and an r statistic for a two by two
contingency situation. Odds ratios are also calculated when
a predictor variable is continuous. However, this type of
odds ratio is not dimensionless (i.e. varies with the units of
measurement) and so is less readily comparable across
studies. Because an r statistic is calculable in a two by two
contingency case, and also to avoid confusion about
different applications of odds ratios, we focus only on r
and d statistics as standardised measure of effect size in this
paper.

However, our focus on these two standardised effect
statistics does not mean priority of standardised effect
statistics (r or d) over unstandardised effect statistics
(regression coefficient or mean difference) and other effect
statistics (e.g. odds ratio, relative risk and risk difference). If
the original units of measurement are meaningful, the
presentation of unstandardised effect statistics is preferable
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over that of standardised effect statistics (Wilkinson & the
Task Force on Statistical Inference, 1999). For example,
imagine we investigated the sex differences in parental care
of a species of bird, and found that the difference was d ¼
1.0 with 95% CI ¼ 0.4 to 1.6. It is often more biologically
useful to know whether the magnitude of the difference was
1 (95% CI ¼ 0.4 to 1.6), 5 (95% CI ¼ 2 to 8), 10 (95% CI ¼
4 to 16), or 100 (95% CI ¼ 40 to 160) visits to the nest per
hour. If researchers understand their study systems well,
original units often help interpretation of effect sizes (see
below). Standardised effect statistics are always calculable if
sample size and standard deviation are given along with
unstandardised effect statistics (see Tables 1 and 2). Also,
meta-analysists benefit from knowing the original units, as
differences in measured quantities regarding the same

subject, say parental care, could results in differences in
standardised effect size estimations, which in turn bias the
outcome of a meta-analysis (e.g. the use of visits to the nest
per hour or amount of food brought to the nest per hour;
see Hutton & Williamson, 2000). We would like to point out
that, surprisingly, essential pieces of information such as
sample sizes and standard deviations are often lacking in
research papers and instead there is only the presentation of
relevant p values, which themselves are little use for meta-
analysis. This problem will be alleviated once researchers
appreciate the importance of effect size reporting. There are
situations where original scales mean little, or are not
readily interpretable, because of a lack of knowledge of the
scales or the study systems. In such situations, standardised
effect statistics are useful. Choice of standardised or

Table 1. Equations for calculating d statistics

Case Equation Description References

Comparing two independent or dependent
groups (i.e. both paired and
unpaired t-test cases)

d ¼ m2 [ m1

spooled
ð1Þ m1 and m2 are means of two

groups or treatments, spooled is
pooled standard deviation,
n is sample size (in the case
of dependent design, the number
of data points), s2 is variance.

Cohen (1988);
Hedges (1981)

spooled ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 [ 1Þs22 ] ðn1 [ 1Þs21

n1 ] n2 [ 2

q
ð2Þ

Comparing two independent groups
(i.e. unpaired t-test case)

d ¼ tunpaired

ffiffiffiffiffiffiffiffiffiffiffi
n1 ] n2
n1n2

q
ð3Þ Alternatively, t values can be used

to calculate d values; tunpaired is
the t value from the unpaired
t-test (compare with Equation
10 in the text)

Rosenthal (1994)

Comparing two dependent groups
(i.e. paired, or repeated-measure
t-test case)

d ¼ tpaired

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 [ r12Þ

n

q
ð4Þ tpaired is the t score from the

paired t-test, r12 is correlation
coefficient between two groups,
and note that n ¼ n1 ¼ n2
not n ¼ n1 ] n2

Dunlap
et al. (1996)

Free software by David B. Wilson to calculate these effect statistics is downloadable (see Table 4). Strictly speaking, Equations 1 to 4 are for
Hedges’s g but in the literature these formulae are often referred to as d or Cohen’s d while Equation 10 is Cohen’s d (see Kline, 2004, p.102
for more details; see also Rosenthal, 1994; Cortina & Nouri, 2000).

Table 2. A two by two contingency table for an observed group contrast and equations for calculating odds ratio (OR) and its
standard error (se) of ln(OR) and an r statistic

Outcome 1 Outcome 2

Group 1 A B
Group 2 C D

Equation Description

p1 ¼ A
A]B

ð5Þ, p2 ¼ C
C]D

ð6Þ p1 and p2 are a proportion of Outcome 1 in the two groups

OR ¼ p1=ð1 [ p1Þ
p2=ð1 [ p2Þ ¼

AD
BC

ð7Þ OR ¼ odds ratio

selnðORÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
A
] 1

B
] 1

C
] 1

D

q
ð8Þ The distribution of OR is not normal but that of ln(OR) is normal.

r ¼ AD [ BCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA]BÞðC]DÞðA]CÞðB]DÞ

p ¼
ffiffiffiffi
c2
1
n

q
ð9Þ sometimes written as ’ (phi coefficient), a special case of

Pearson’s r; n ¼ A ] B ] C ] D

The letters A–D represent observed cell frequencies. If A, B, C, or D ¼ 0 in the computation of OR, 0.5 is often added to all cells for
correction. Confidence intervals for OR can be calculated using Equations 8 and 15 (see Fleiss, 1994; Rosenthal, 1994; Kline, 2004).
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unstandardised effect statistics at this level should be left to
researchers, as they are the ones who are the most informed
on the relevant measurement scales.

We mainly list calculation procedures for standardised
effect statistics (r and d) below. This is because calculations
of standardised effect statistics and their CI are not
straightforward compared to their unstandardised counter-
parts (Smithson, 2001; Thompson, 2002b). Most statistical
software provides unstandardised effect statistics and their
CI so that they do not require special treatment here.
General arguments later in our article are applicable to
both standardised and unstandardised effect statistics.

There is common confusion and an extremely important
point regarding the use of r statistics (i.e. correlation) and
the distinction from regression. While there are mathemat-
ical relationships between some of the formulae used in
correlation and regression (see below), their goals and
derivations are distinct. Correlation measures association
while regression attempts prediction. In the most familiar
form of regression analysis, ordinary least squares, two sorts
of effect statistics are commonly quoted. The first is
coefficient of determination, R2. It quantifies the proportion
or percentage of variation in the response variable that can
be accounted for by the predictor(s); it has the advantage
that the explanatory power of the independent variable has
an immediate intuitive interpretation (e.g. ‘‘12% of
difference in mating success is attributable to body size’’
or ‘‘23% of variation in maze-learning speed is heritable’’).
It has the disadvantage that because the magnitude of the
R2 value depends on the original variance ‘to be explained’,
comparison across studies can be misleading (Achen, 1982)
or even meaningless (King 1986). So, just because a pre-
dictor has a larger R2 in one situation than another does not
mean that the predictor is more influential in the former
situation; there may have been less original variation in the
first study. Although R2 appears to be the squared Pearson’s
correlation coefficient (r), and has sometimes been con-
verted to this for meta-analysis, the two are not interchange-
able because r measures shared variation between y and x,
whereas R2 is the variation in y attributable to (linear
variation in) x. Taking the square root of R2 leads to
a biased measure of effect (see Equation 13 below).

The second type of effect statistic derived from regression
analysis is the slope, b, or sometimes standardised slope
(termed beta, b, in the widely used statistical package SPSS,
although this can lead to confusion because beta is also used
to describe the population parameter estimated by the,
unstandardised, slope in regression). The slope is the change
in the response variable for a unit change in the predictor
variable; as the magnitude of b depends on the units of
measurement it is not a standardised effect statistic. A
standardised slope is the change in the response variable,
measured in standard deviations, associated with a change
of one standard deviation in the predictor variable. It is thus
a standardised measure of how much y is expected to
change when x changes by a given amount which, when
testing quantitative models of causal influence, is a more
natural measure of effect than R2. However, as argued
forcefully by King (1986) and Luskin (1991), if the original
goal of a regression analysis is to predict y through

knowledge of x, then why abstract to standardised measures
such as R2 and beta? Therefore we recommend that the
unstandardised slope is presented along with its confidence
intervals, in addition to R2 and/or adjusted R2 (see below;
Equation 12). That said, in meta-analysis, a relevant
method of incorporating information from a regression
analysis may be required and, with careful interpretation
and caution, R2, beta and transformations to r can have
utility (Luskin, 1991).

(2) Covariates, multiple regression, GLM and
effect size calculations

Effect size calculated from two variables is appropriate if
there are no influential (or confounding) covariates (e.g. not
controlling for effects of sex or weight in a hormonal
manipulation experiment; see Garamszegi, 2006). It is
possible that even the direction of the effect can change
from positive to negative if highly influential covariates
exist. In other words, the biological interpretation of effect
size statistics can sometimes be completely wrong if we do
not consider covariates. In non-experimental studies, many
covariates often exist for a predictor variable of interest and,
in experimental studies, controlling for a covariate may
increase the precision with which one can estimate the
experimental effect. Generalized linear models (GLMs;
McCullagh & Nelder 1989; Dobson, 2002) provide
a common framework for the analysis of models, such as
analysis of covariance (ANCOVA), that incorporate both
categorical and continuous predictor variables, as well as
problems traditionally analysed by ANOVA or regression.
As they are an extension of multiple regression, the effect
statistics can be derived in an analogous fashion.

Before considering how effect estimates and CIs can be
calculated for multiple regression and GLM problems,
there is a simple, but absolutely crucial, point to remember.
Unless one is analysing a model in which the predictor
variables are completely uncorrelated, a condition only
likely in a factorial experimental design that is completely
balanced, the effect size estimates for a given variable will
vary according to what other predictor variables are in the
model. For this reason, it could be misleading to compare
the slopes, standardised or not, or the (partial) R2 values for
a predictor variable among analyses in which different, or
no, other predictor variables are included in the model.
This is a specific instance of the general problem, referred
to earlier, that estimates of the variance explained by
predictor variables depend on the total variance to be
explained, and inclusion of additional predictor variables
consumes some of that variance.

With the preceding caveat in mind, it is always possible to
obtain t values from a statistical model for each continuous
predictor variable and also for each group (level) of
a categorical predictor variable. Generally, t values are
obtained from a difference between estimates (e.g. means or
slopes) divided by the standard error of the differences;
almost all statistical software provides t values when
a statistical model is constructed. The t values obtained
for groups or categories in a predictor variable can be used
for calculating d with a formula:
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d ¼ tðn1 ] n2Þffiffiffiffiffiffiffiffiffi
n1n2

p ffiffiffiffiffi
df

p ; ð10Þ

where n1 and n2 are the numbers of sample size in two
groups and df is the degrees of freedom used for
a corresponding t value in a linear model (Equation 10
should be used over Equations 1–3 in Table 1 when t values
are obtained from multiple regression; see below). The t
values for a continuous predictor variable can be converted
to r using a rather unintuitive equation below:

r ¼ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 ] df

p : ð11Þ

Effect size calculated using in this way takes covariates into
account. This form of r value is often referred to as a partial
correlation coefficient. The partial correlation between y
and x1, controlling for x2, is numerically equivalent to the
correlation between the residuals from the regression of y on
x2 and the residuals from the regression of x1 on x2. Thus
the partial coefficient for a given predictor removes the
variance explained by other predictor variables from both
variables, and then quantifies the remaining correlation. A
simple case of partial correlation is described below:

r12j3 ¼
r12 [ r13r23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

1 [ r213
��
1 [ r223

�q ; ð12Þ

where r12|3 is a partial correlation between variables 1 and
2 controlling for variable 3. As you can imagine, by using
Equation 11 (and also Equation 10), we are able to control
for a list of covariates. However, the calculation of r from t
values introduces bias when predictor variables are non-
normal which may often be the case (the bias is analogous
to the difference between Pearson’s r and Spearman’s r
when variables are not normal; see Section III.4 dealing
with heterogeneous data).
Furthermore, unnecessary predictor variables in the

statistical model can influence the estimates of other,
perhaps more important, effects. Therefore, careful statis-
tical model selection procedures are essential; in other
words, determining what predictors should be in a model
and what predictors should be taken out of the model. A
problem here is that there seems to be no strong consensus
on what is the most appropriate model selection procedure.
A popular procedure is to obtain minimum adequate
statistical models (based on the principle of Occam’s Razor;
cf. Whittingham et al., 2006) and there are two common
ways of doing so: one using statistical significance (e.g.
Crawley, 2002) and the other using the Akaike’s information
criterion (AIC) (an information-theoretic, IT, approach;
Johnson & Omland, 2004; Stephens et al., 2005; note that
the IT approach often results in more than one ‘important’
model, in which parameters, or effect sizes, can be
calculated as weighted means according to a weight given
to each remaining model; for detailed procedures, see
Burnham & Anderson, 2002). An example of the first
approach is to achieve model simplification through
sequential deletion of the terms in the model that are
found to be least statistically significant until all the terms

remaining attain statistical significance below some thresh-
old, often p ¼ 0.1 (sometimes referred to as the backwards
elimination method). The second approach is to find
a model which has the smallest AIC value of all models
considered. The AIC is an index which weighs the balance
between the likelihood of the model and the number of
parameters in the model (i.e. a parsimony criterion). The
model with the smallest AIC is supposed to retain all
influential and important terms, i.e. covariates (as noted
above, several competing models with small AIC values, out
of all investigated models, are often retained). We should
note that the former approach using statistical significance
will have the weaknesses of NHST (e.g. influence of sample
size). Also the IT approach using AIC is not without
problems (see Guthery et al., 2005 for criticisms; see also
Stephens et al., 2005; McCarthy 2007). Although both
approaches may often result in the same model or similar
models, thus providing us with similar effect size estimates,
care should be taken in model selection whichever
approach is used. Another way of selecting models (and
estimating parameters), which is recently gaining popularity
in biology, is a Bayesian approach (for more details see
Basáñez et al., 2004; Ellison, 2004; Clark, 2005; Clark &
Gelfand, 2006; McCarthy, 2007). However, it is worth
noting that in more experimental areas of biology the
search for a minimum adequate, or the best, model may not
be as crucial as in disciplines that are more observational
than experimental in nature. When one or more factors are
experimentally manipulated the final (and only) model
retains these factors to determine their magnitude of effect
(see Stephens et al., 2005; Whittingham et al., 2006). Model
selection should probably be dictated by the nature of data;
biologists should use their experience and expertise to
decide what biologically meaningful factors should be in
a particular model and, then, see if the direction of the
estimated effect of each factor from the model makes sense
(see Gelman & Hill, 2007). We will not dwell on model
selection any further here since this is not a focus of this
paper, but readers are encouraged to explore the literature
cited above (see also Faraway, 2005, 2006).

The effect size calculations described above may be
extendable to GLMs with binomial, Poisson and other
distributions from the exponential family, and with complex
error structures (McCullagh & Nelder, 1989; Dobson,
2002). These models usually provide z values instead of
t values (i.e. they use the normal distribution rather than the
t distribution). We can use obtained z values to replace t
values in the relevant equations for calculation of effect size
(note that the degrees of freedom should be calculated as if
t-tests were used). The use of GLMs is one of several ways
which make it possible to calculate effect size from
heterogeneous data (i.e. non-normal error structure and/
or non-uniform variance; see below for more discussion).
However, we are unsure how much bias may be incurred
from this procedure in estimating d and r.

We return to a common confusion among researchers
regarding R2, which represents the variance in the data that
is accounted for by a particular model. Often, the square-
root of R2 is used as an effect statistic in meta-analysis when
models include one predictor, and even when they include
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more than one predictor. However, the square-root of R2

provides a biased effect-size estimate of a predictor of interest
and this bias is especially severe when sample size is small.
The equation below should be used to correct this bias:

radjusted ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 [

�
n [ 1

��
1 [ R2

�
n [ k [ 1

s
; ð13Þ

where k is the number of predictors in the model (not
including the intercept), n is the sample size (Montgomery &
Morrison, 1973); this is the square root of adjusted R2 which
is often calculated in statistical software along with R2.
Although this adjustment may be used for univariate
models, it is not desirable to use this effect size estimate
for a particular predictor in multivariate models. We
recommend effect size be estimated from t values or raw
data as suggested above (Table 1). Effect size estimation
from models using t values may be used even when there
are quadratic or polynomial predictors and interactions. An
example of this is considering an interaction between strain
type and temperature on the growth of two strains of
bacteria. The t value for this interaction between strain and
temperature (i.e. difference in slopes) can be used to
calculate d using Equation 10 (e.g. t ¼ 3.1, n1 ¼ n2 ¼ 30,
df ¼ 55 then d ¼ 0.84). However, we should be aware that
when higher order interactions exist, the main effects (or
lower order interactions) of the constituent variables are
difficult to interpret in a meaningful way (Crawley, 2002)
and thus, the effect size of main effects and lower order
interactions requires special care in interpretation. For
example, when a model has strain type-by-temperature
interaction as an influential factor, the interaction can make
effect size estimates for the main effects of strain type and
temperature uninterpretable if the slopes for the interaction
are merging, diverging or crossing. However, if the slopes
are in similar directions, there are cases where effect size
estimations from main effects are meaningful. Graphical
presentations are often the easiest way to understand the
nature of interactions, which is why graphics are given such
prominence in statistical software aimed at statisticians (e.g.
Venables & Ripley, 2002; Maindonald & Braun, 2003).

(3) Dealing with bias

Two major biases can occur for effect statistics, especially
when sample size is small. One is an inherent bias for
a particular statistic and the other is a bias caused by
sampling errors. The former is of little concern for the
correlation coefficient (Hunter & Schmidt, 2004). The
d statistics show an upward bias that is relatively large when
sample sizes are less than 20 (or less than 10 in each group).
Hedges & Olkin (1985) have proposed the equation below
to correct this bias.

dunbiased ¼ dbiased

�
1 [

3
4ðn1 ] n2 [ 2Þ [ 1

�
; ð14Þ

where n1 and n2 are sample sizes of two comparison groups
[note that when a paired designed is used, n1 ¼ n2 ¼ n so

that the denominator can be written as 8(n–1) – 1]; dunbiased
is called Hedges’ d (dbiased is Cohen’s d or Hedges’ g). It is
recommended that this correction be used routinely,
although bias is negligible when sample size is large.

The bias incurred by sampling errors is applicable to
both r and d statistics and can be severe when sample size is
small. CIs, which show the precision of an estimate, are
a solution here. Although calculation of CIs for familiar
statistics such as means and standard deviations is fairly
straightforward, the correct calculation of CIs for effect sizes
is not. This is because the construction of CIs around effect
size involves the use of non-central t and F distributions,
which most biologists have never heard of and for which no
generic formulae exist (Thompson, 2002a). However,
‘traditional’ CIs, which offer approximate estimates, are
easily calculable. The approximate width of 95% CIs for an
effect size is:

95%CI ¼ ES [ 1:96se to ES] 1:96se; ð15Þ

where ES stands for effect size (e.g. d, or z-transformed r)
and se is the asymptotic standard error for the effect size
(note that these formulae are also used for calculations of
unstandardised effect statistics and also that t distribution
with appropriate df should be used instead of 1.96 when
sample size is small, say, less than 20; for simulating CI, see
Faraway, 2005, 2006; Gelman & Hill, 2007). The formulae
for se are given in Table 3. Fortunately, construction of the
exact effect size is easily achievable using computer software
(and some programmes calculate the ‘exact’ CIs around
effect sizes). Table 4 lists these programmes and also those
that calculate the effect sizes discussed herein. Also, at
www.bio.bris.ac.uk/research/behavior/effectsize.htm, we
provide scripts written in the free statistical software R
(www.r-project.org) which include some examples to
calculate CIs from simulation and also from bootstrapping
which can deal with heterogeneous data.

(4) Problems with heterogeneous data

If data have a heterogeneous (i.e. non-uniform) error
structure and variance (e.g. non-parametric data), effect
statistics calculated using these data are likely to be biased
and the CIs are likely to be inaccurate. Some social
scientists have acknowledged this as a major problem with
effect size presentation (Grissom & Kim, 2001). There is no
consensus on how to deal with this problem although
several procedures have been proposed as non-parametric
measures of effect size (e.g. Mielke & Berry, 2001; Johnston,
Berry & Mielke, 2004; reviewed in Grissom & Kim, 2001).

One obvious solution is the use of transformation and
one can calculate standardised effect statistics using these
values. In most cases, with appropriate transformation,
heterogeneity is curable; normalising transformations,
especially Box-Cox transformations, are practical (see
Crawley, 2002; Fox, 2002). If normalising transformation
fails, a drastic solution may be to calculate effect size using
rank-transformed values (Hopkins, 2004). This solution
may not be so surprising considering Spearman’s rank
correlation coefficient uses a similar logic. However, if rank
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transformation does not alleviate heterogeneity in varian-
ces, this method will not estimate correct effect size. Also, if
we would like to present unstandardised effect statistics,
transformed values should be back-transformed to the
original scales (in transformed scales, the interpretation of
effect sizes, e.g., regression coefficients or mean differences,
is often difficult; for effective interpretation of regression
coefficients, see Gelman & Hill, 2007). A related point to
make here is transformation in predictors of regression.
Although regression models do not assume predictors to be
normal, appropriate transformations of predictors can often
increase the fit of models (Faraway, 2005, 2006). Also
standardised effect statistics will be more accurate with
normalised response and predictors if these estimates were
to be obtained from t values from a regression model, by
using Equations 10–11.
We have mentioned above GLMs which can deal with

heterogeneous data. The recent growth of GLMs in many
biological disciplines may mean that effect size calculation
with heterogeneous data should rarely pose problems
although, we should repeat, the extent of any bias from
this procedure is unknown. Another possible solution is to
calculate CIs for effect sizes of heterogeneous data using
bootstrapping techniques (yet another solution is the use of
Bayesian approaches as CIs or ‘credible intervals’ can be
calculated for parameters which are often difficult or
otherwise impossible to estimate; see Gelman & Hill, 2007;
MacCarthy 2007 and references therein). Bootstrapping is
a computer-intensive re-sampling method. In a bootstrap-
ping procedure, a fixed number of samples are randomly
selected from the original data with replacement. When this
is repeated many times (e.g. 5000) with a computer, the
repeated bootstrap samples produce a distribution of
estimates of the statistic of interest and the resulting
distribution is used for estimation of CIs (Dixon, 2001;
Kline, 2004). It should be noted that small sample size will
often give incorrect coverage of CIs. Also, there are several
bias-correction methods of calculating CIs in bootstrapping
(for a concise summary of methods, see Dixon, 2001). Thus,
the interested reader is referred to Davison & Hinkley
(1997) and Manly (2007).

A recent, powerful and potentially widely applicable
approach based on permutation and randomization is
MRPP (multi-response permutation procedures; Mielke &
Berry, 2001). The essence of the approach is the distribution
of pair-wise distances between data points within groups, or
putative groups, and the comparison of these distances with
those obtained from all permutations of the data (or
approximations thereof). As different distance metrics can
be used, no particular distributions are assumed, and the
method can be adapted to any of the common statistical
models (and several less common ones, such as circular
statistics and tests of sequential dependence; Mielke &
Berry, 2001), the approach has huge potential (for an
application in biology, see Endler & Mielke, 2005). The
effect statistics that are generated can often be related to the
more familiar types already discussed, but only when
analogous distance metrics are used (e.g. squared Euclidean
distance, the minimisation of which is the model-fitting
criterion for most of the classical statistical tests discussed).
This is an area for further research; free Windows im-
plementation of MRPP and other related approaches is avail-
able at www.fort.usgs.gov/Products/Software/Blossom/.

(5) Non-independence of data

Literature on effect size estimation with non-independent
data seems scarce (Dunlap et al., 1996; Hunter & Schmidt,
2004). We have already mentioned the case where control
and experimental groups are related (i.e. repeated, matched
or correlated designs; see Table 1). There are many other
cases in which data points are not independent and some of
these may be highly complex (e.g. hierarchical nested or
crossed data structures). Here we mention two cases in
which we can reasonably estimate effect size. The first
case is comparing two groups in which all data points are
related in each group. For example, we want to compare
decline in sperm velocity over time in two species of
birds. The velocities of sperm from 10 individuals of each
species are measured every hour for 20 h. Assuming, for
argument’s sake, that sperm velocity shows a linear decline-
with time, a regression slope can be calculated for each

Table 3. Asymptotic estimates of standard errors (se) and other formulae required to calculate confidence intervals

Statistic Equation Note References

d (independent,
unpaired) sed ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 ] n2 [ 1
n1 ] n2 [ 3Þ

h
ð 4
n1 ] n2

Þð1] d2

8 Þ
ir

ð16Þ
Equation 16 provides se for Cohen’s d
while Equation 17 provides se for Hedges’
d (unbiased d in Equation 14)

Hunter &
Schmidt (2004);
Hedges (1981)

sed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 ] n2
n1n2

] d2

2ðn1 ] n2 [ 2Þ

q
ð17Þ

d (dependent, paired,
repeated measure)

sed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 [ r12Þ

n
] d2

2ðn [ 1Þ

q
ð18Þ n ¼ n1 ¼ n2, and r12 is correlation

coefficient between two groups
Becker (1988)

r (correlation
coefficient)

seZr ¼ 1ffiffiffiffiffiffiffiffiffi
n [ 3

p ð19Þ Zr is the Fisher transformation of
r and the distribution of r is not normal
but that of Zr is normal

Hedges &
Olkin (1985)

Zr ¼ 0:5ln
h
ð1] rÞ
ð1 [ rÞ

i
ð20Þ

r ¼ e2Zr [ 1
e2Zr ] 1 ð21Þ

Refer to Table 1 for some of the symbols used.
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individual. The slopes of the 10 regression lines on time for
each of these two species can be compared using a t-test.
Then, Equation 3 can be used to calculate d statistics.

The second case is more difficult to deal with. This is
when two groups have repeated measurements and/or
related data (two groups include data points from
a particular individual and/or each group includes more
than one data point from a particular individual). For
example, in an ecological field experiment, we want to
evaluate the annual breeding success of individuals (the
number of offspring produced in each year) when exposed
to two experimental treatments. Because of logistical
constraints in the field and limited availability of study
animals, the experiment takes place over three breeding
seasons, with some individuals appearing in both experi-
mental and control treatments (in different years) while
others are only in either one of the two treatment groups.
Mixed-effects models, which can incorporate information
about non-independence as well as covariates, are often
used to deal with this type of data (Pinheiro & Bates, 2000;
see also Paterson & Lello, 2003). The t values from mixed-
effects models can be used to approximate d statistics using
the equations below:

d ¼
tMEM

�
1]

�
ni=no

�
R
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 [ R
p �

no1 ] no2
�

ffiffiffiffiffiffiffiffiffiffiffiffi
no1no2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
no [ k

p ; ð22Þ

R ¼ s2B
s2B ] s2E

; ð23Þ

where tMEM is t value from mixed-effects model, no1 and
no2 are the numbers of observations in each treatment (i.e.
one individual may contribute more than one observa-
tion), no and ni are the total number of observations and
the number of individuals (or groups), respectively (no1 ]
no2 ¼ no), k is the number of parameters (including the
intercept) and R is often called the repeatability or intra-
class correlation (e.g. Zar, 1999) which consists of two
variance components: s2B (between-individual, or between-
group, variance) and s2E (within-individual, or within-group,
variance or residual variance; they are obtained from the
random-effect part of the mixed-effects model). In a similar
manner, when a predictor variable of interest is continuous
(e.g. the effect of temperature on lizard behaviour, where
data consist of 10 replicates from each of five animals), the
t values from mixed-effects models can be used to
approximate r statistics:

r ¼
tMEM

�
1]

�
ni=no

�
R
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 [ R
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2MEM½1] ðni=noÞR�2

�
1 [ R

�
] no [ k

q : ð24Þ

CIs for these effect statistics need to be computed using
the programmes listed in Table 4 through t values from
mixed-effects models and their df. The procedures of effect
size estimation proposed above using mixed-models may
or may not work depending on the nature of the data (e.g.
structure of the pseudo-replication and sample size). Also,T
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the way mixed-effects models calculate df is different from
conventional ANOVAs (sometimes it differs among
software) so that CI estimation may not be reliable.
Alternatively, approximate CIs for these effect statistics
can be calculated from converting CIs for unstandardised
measurements, which are usually calculated automatically
in statistical software (but this has the same problem as
these CIs depends on how software calculates df; for
a solution using simulation or bootstrapping, see Faraway,
2006; for a Bayesian solution, see Gelman & Hill, 2007). A
simpler approach to estimate standardised effect statistics
(or a better point estimate) is to use linear model or GLM
frameworks. As mentioned before, d calculations do not
depend on independence of data, but t calculations do (see
Equations 1–4 Table 1; note that CI calculations for d do
depend on independence of data, Equations 16-18 in
Table 3). Thus, fitting linear models or GLMs to
a particular set of data with a certain non-independent
structure (by ignoring non-independence) provide t values
of interest, which can be converted to d or r point
estimates (Equations 10–11). However, this straightfor-
ward method does not provide correct CIs (or more
simply d and r can be calculated from raw data, although
using raw data does not control for covariates). Although
point estimates from this can be used to compare those
obtained by using mixed-effects models and their CIs
estimates above, this is obviously not a solution to the
problem (note that Equations 22–24 only provide ap-
proximates; also, for bootstrap for non-independent data,
see Davison & Hinkley, 1997).
Incidentally, by extending what is described about GLMs

above, it may be possible to calculate standardised effect
statistics and their approximate CIs for some generalized
linear mixed models (GLMMs), which are increasingly used
in biology (note that s2E in Equation 23 can be set to be 1
for probit-link or p2/3 for logit-link GLMMs with binomial
errors; Snijders & Bosker, 1999). However, when a mixed-
effects model framework is used, currently, it is probably
much easier to present unstandardised effect statistics and
interpret them. Kline (2004) states that methods for
calculating (standardised) effect statistics and its CIs for
complicated non-independent designs are lacking. However,
we are confident that answers for this particular problem
will be forthcoming.

(6) Translating effect size into biological
importance

There is little point presenting effect sizes in papers if these
are not interpreted and discussed. Thus it is important to
know what magnitude of effect size constitutes something
biologically important. If researchers are familiar with their
study systems, or abundant previous research on a topic of
interest exists, effect sizes in original units are more readily
interpretable than standardised effect statistics. Compar-
isons of effect size values between previous research and
current work is often fruitful if effect size estimations are in
the same units. However, prior knowledge is not always
available, or one’s research may use different measurement
scales from previous research. In such cases, interpreting

standardised effect sizes may make more sense as there are
some guidelines we can follow. Cohen (1988) has proposed
‘conventional’ values as benchmarks for what are consid-
ered to be ‘small’, ‘medium’, and ‘large’ effects (r ¼ 0.1, 0.3,
0.5 and d ¼ 0.2, 0.5, 0.8, respectively). However, these
benchmarks have been criticized in the social and medical
sciences because practical and clinical importance depends
on the situation researchers are dealing with (Thompson,
2002a, b; Kline, 2004). For example, the relationship
between cigarette smoking and lung cancer (r ¼ 0.1) is
considered practically and clinically very important because
appropriate legal policy change might save millions of lives
(Gage, 1978). By contrast, the same degree of relationship
between cigarette smoking and sleeping hours would not be
considered practically or clinically very important; it is hard
to imagine that a ban on smoking would happen on the
basis of this finding.

In terms of pure science, however, these two findings are
both interesting and may be considered important as long
as both results have narrow and similar CIs. We argue that
biological importance is more objective than practical or
clinical importance in which subjective (and sometimes
political) judgements may be inevitable. Although we have
no intention of advocating total reliance on benchmark
values in biology, we suggest that benchmarks for effect
statistics may be useful. Nonetheless, biologists also should
take caution in using benchmarks and should evaluate their
effect sizes in the light of their hypotheses and also of results
from previous relevant studies. We emphasize the point
made by Thompson (2001) who stated that if we use these
fixed benchmarks with the same rigidity that a ¼ 0.05 is
used in NHST, we are just being stupid in another metric.

In this paper, we have emphasised the dual approach of
using effect size and its CI. Interpreting the point estimate
of effect size itself, without consideration of its CI, may not
make sense at all. If a large effect, say d ¼ 1.2, has a large CI
(95% ¼ 0.1 to 2.3) and another similarly large effect has
a small CI (95% ¼ 1.0 to 1.4), the interpretation of these
putatively large effects will be different. We think visual
presentation of effect size values and their CIs is a useful
approach as described in Fig. 2. This visual approach is
particularly useful for pair-wise contrasts, i.e. standardised
and unstandardised mean difference, in experimental
studies. Providing the precision of effect (CI) is essential
although it has attracted less attention than the point
estimate (effect size) in general (e.g. Wilkinson & the Task
Force on Statistical Inference, 1999).

Some people have suggested converting d to r when
d statistics are interpreted, because many researchers have
some degree of conceptual understanding of r statistics and
may find it easy to interpret effect size in r-converted form
(e.g., Cortina & Nouri, 2000; Jennions & Møller, 2003). We
recommend effect size estimates be interpreted in their
original form because conversions may unnecessarily incur
bias (Thompson, 2002b) and also it makes more sense to
interpret, say, a difference between two groups as d rather
than r. However, we agree that conversions are conceptually
helpful and also an essential technique for meta-analysis
when integrating the results of studies which have employed
different methods (e.g. a correlational approach and
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a two-group design). Conversion formulae are below
(Rosenthal, 1994):

r ¼ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 ]

ðn1 ] n2Þ2
n1n2

q ; ð25Þ

d ¼ 2rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 [ r2

p : ð26Þ

We should note that correct conversion formulae for
Hedges’ g are somewhat different from those described
above (d is here Cohen’s d). The interested reader is referred
to Rosenthal (1994) and Fleiss (1994).

IV. CONCLUSIONS

(1) The presentation of effect size along with its CI is
urgently required because effect size and its CI provide the
two most important pieces of statistical information for
biologists: the magnitude estimate of an effect of interest
and the precision of that estimate. There is no doubt that
the presentation and interpretation of effect size will reduce
prevalent misuse and misinterpretation of NHST and the p
value in biology. Effect size presentation along with its CI
will also benefit and advance our fields as cumulative
science, encouraging ‘effective’ as well as ‘meta-analytic’
thinking, as is already happening in some other disciplines.
The dual approach of presenting both effect size and its CI
is essential although the presentation of the CI is less
discussed.

(2) Although this article covers many situations for effect
size calculation and deals with the problems associated with
effect size and its CI calculation and presentation (e.g. the
existence of covariates, bias in calculation, non-normality in
data, non-independence of data), our article by no means
provides comprehensive guidelines. This is a broad topic
comprising many issues (see Fern & Monroe, 1996).

(3) Our article, however, serves as a beginner’s manual
and a starting point for changing statistical practice in
biology for the better. In the future, as more and more
people report effect sizes, the problems which we could
not provide definitive solutions to here will hopefully be
solved (and hopefully, effect size and its associated
calculations will be more prevalent in common statistical
software). Also, as we focus on the calculation of
standardised effect statistics that are the basis for meta-
analysis, our article serves as a reference when conducting
such analyses.

(4) Our particular focus on the two classes of stand-
ardised effect statistics (r and d) in this article does not
necessarily represent our view of which effect statistic is
considered the most important; as we have seen, in some
cases, calculations of the standardised effect statistics are
complicated. Unstandardised effect statistics (regression
coefficient or mean difference) and other effect statistics
(e.g. odds ratio) should also be used and presented
accordingly. The rule of thumb may be the usage of an

effect statistic, which can be interpreted in a biologically
meaningful way, depending on biological systems or
questions researchers are dealing with. This also relates
to the difficulty of biological interpretation of effect size,
which is often context-dependent.

(5) Emergent alternative approaches to NHST such as
the information-theoretic, IT, and Bayesian approaches
may replace NHST in many areas in the future (for more on
these alternatives, see e.g. Johnson & Omland, 2004; Ellison,
2004; McCarthy 2007). Whatever inferential statistical
approach is used in the future, effect size estimation is here
to stay because effect size is the information that all scientists
should be interested in, because it relates to biological
importance. We repeat that the obligatory presentation of
effect sizes with CIs is strongly recommended in any journal
of biology. Editors of journals should accept the fact that such
presentations may require more space per article, but this is
for the betterment of their fields.
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